# Understanding Secondary Organic Aerosol (SOA) Formation from Lower-Volatility Precursors: Photooxidation of Naphthalene and Alkyl-naphthalenes

Arthur Chan, Beth Kautzman, Jason Surratt, Puneet Chhabra, Man Nin Chan, John Crounse, Paul Wennberg, Richard Flagan, John Seinfeld

DOE ASP February 27, 2009

# Organic Aerosol

- Primary (POA)- Traditional view
  - directly emitted
  - nonvolatile
  - static



Secondary (SOA)





condensable products

#### Semivolatile Emissions



Shrivastava et al., JGR 2008

Robinson et al., Science 2007

### Naphthalene

- Most abundant polycyclic aromatic hydrocarbon (PAH)
- Sources:
  - Wood burning
  - Diesel exhaust
  - Gasoline exhaust
- Sink:
  - Reaction with OH (lifetime of 5.5 h)
- Objective: to study SOA formation from PAHs and calculate the contribution of PAH oxidation to SOA formed from semi-volatile emissions



### Experimental

- High- and Low-NO<sub>x</sub>:
  - High NO<sub>x</sub>: HONO + hv → OH + NO (NO added)
  - Low  $NO_x$ :  $H_2O_2 + hv \rightarrow OH + OH$
- T≈ 299K, RH < 10%
- Ammonium sulfate seed, volume ≈ 15 µm<sup>3</sup> cm<sup>-3</sup>
- Also: 1-methylnaphthalene (1-MN), 2-methylnaphthalene (2-MN), 1,2-dimethylnaphthalene (1,2-DMN)

#### Instrumentation

- Dual 28-m<sup>3</sup> chambers
- Gas phase:
  - GC/FID (naphthalene, 1-MN, 2-MN, 1,2-DMN)
  - GC/TOF-MS (gas-phase intermediates)
  - CIMS (+/-) (gas-phase intermediates)
  - O<sub>3</sub>, NO/NO<sub>x</sub>, NO<sub>2</sub>
- Aerosol phase:
  - DMA (aerosol size distribution, volume conc)
  - AMS (aerosol composition, density)
  - Filter sampling -> UPLC/ESI-TOFMS, HPLC/ESI-ITMS (aerosol composition)

#### Aerosol Yields from PAHs



- As with virtually all SOA systems, low-NO<sub>x</sub> yields are higher
- Only exception are sesquiterpenes, where nitrates are formed

#### Aerosol Yields from PAHs

High NO<sub>x</sub> Yield Curves



$$Y = \frac{\Delta M_O}{\Delta HC} = M_O \sum_{i=1}^{n} \frac{\alpha_i K_i}{1 + K_i M_O}$$

|                      | $\alpha_1$ | $K_{1}$ , $m_1^3 \mu g^{-}$ | $\alpha_2$ | $K_{2,}m^3 \ \mug^{-1}$ | SOA Yield @<br>15 µg m <sup>-3</sup> |
|----------------------|------------|-----------------------------|------------|-------------------------|--------------------------------------|
| high NO <sub>x</sub> |            |                             |            |                         |                                      |
| naphthalene          | 0.21       | 0.59                        | 1.07       | 0.0037                  | 0.26                                 |
| 1-MN                 | 0.50       | 0.11                        |            |                         | 0.33                                 |
| 2-MN                 | 0.55       | 0.13                        |            |                         | 0.38                                 |
| 1,2-DMN              | 0.31       | n/a                         |            |                         | 0.31                                 |
| low NO <sub>x</sub>  |            |                             |            |                         |                                      |
| naphthalene          | 0.73       | n/a                         |            |                         | 0.73                                 |
| 1-MN                 | 0.68       | n/a                         |            |                         | 0.68                                 |
| 2-MN                 | 0.58       | n/a                         |            |                         | 0.58                                 |

# Explaining the "Unexplained"



Robinson et al., Science 2007

- Only 15% of the SOA is from "traditional" precursors:
  - 90% of this is accounted for by light aromatics (benzene, toluene, xylenes, trimethylbenzenes)
  - Estimated from PTR-MS measurements of these precursors, and yields from SOAM II (Koo et al., Atmos Env., 1997)
- How much SOA do PAHs contribute to the "unexplained" SOA?

#### **Diesel Exhaust**

Emission profile of medium-duty diesel engine (Schauer et al., ES&T,



- Similar to engine used in Robinson et al. (2007) (same toluene : particle mass ratio)
- k<sub>OH</sub> for different compounds to estimate the amount of HC reacted at any given time
- SOA Yields from high-NO<sub>x</sub> photooxidation of benzene, toluene and m-xylene under similar conditions (OH precursor, lights etc.) (Ng et al., ACP, 2007)

#### Contribution of PAH to SOA

| SOA for | med (μg km | ·1)        |            |  |
|---------|------------|------------|------------|--|
|         | after 3 h  | after 12 h | after 24 h |  |

|                     | after 3 h | after 12 h | after 24 h |
|---------------------|-----------|------------|------------|
| Light aromatics     |           |            |            |
| benzene             | 14        | 53         | 101        |
| toluene             | 47        | 158        | 255        |
| ethylbenzene        | 7         | 22         | 34         |
| xylene              | 35        | 96         | 126        |
| o-xylene            | 19        | 43         | 49         |
| n-propylbenzene     | 3         | 7          | 9          |
| p-ethyltoluene      | 12        | 34         | 47         |
| m-ethyltoluene      | 7         | 17         | 21         |
| 1,3,5-TMB           | 11        | 15         | 16         |
| 1,2,4-TMB           | 27        | 49         | 52         |
| Total               | 182       | 496        | 710        |
| PAHs                |           |            |            |
| naphthalene         | 62        | 136        | 155        |
| 2-methylnaphthalene | 152       | 231        | 234        |
| 1-methylnaphthalene | 73        | 120        | 124        |
| C2-naphthalenes     | 122       | 167        | 168        |
| C3-naphthalenes     | 61        | 74         | 74         |
| C4-naphthalenes     | 25        | 30         | 30         |
| other               | 226       | 275        | 275        |
| Total               | 721       | 1033       | 1060       |
|                     |           |            |            |

- Amount of SOA from PAH photooxidation is greater than that from light aromatics
- Why?
  - PAH oxidation products are less volatile (higher SOA yield)
  - PAH oxidation is faster
- Offsets the difference in emissions

#### Other Semivolatile Emissions

| Light aromatics           |     | PAHs                |     | n-alkanes           |     |
|---------------------------|-----|---------------------|-----|---------------------|-----|
| benzene                   | 14  | naphthalene         | 62  | dodecane            | 2   |
| toluene                   | 47  | 2-methylnaphthalene | 152 | tridecane           | 4   |
| ethylbenzene              | 7   | 1-methylnaphthalene | 73  | tetradecane         | 10  |
| xylene                    | 35  | C2-naphthalenes     | 122 | pentadecane         | 11  |
| o-xylene                  | 19  | C3-naphthalenes     | 61  | hexadecane          | 34  |
| n-propylbenzene           | 3   | C4-naphthalenes     | 25  | heptadecane         | 55  |
| p-ethyltoluene            | 12  | other               | 226 | octadecane          | 96  |
| m-ethyltoluene            | 7   |                     |     | nonadecane          | 105 |
| 1,3,5-TMB                 | 11  |                     |     | eicosane            | 104 |
| 1,2,4-TMB                 | 27  |                     |     |                     |     |
| Total for light aromatics | 182 | Total for PAHs      | 721 | Total for n-alkanes | 420 |

 After 3 h of photooxidation, PAHs and n-alkanes can account for up to 86% of the SOA, or all of the "unexplained" SOA

#### Other Semivolatile Emissions

Other sources of POA:

| Source                 | PAH SOA / light<br>aromatic SOA<br>(after 12 h) |  |  |
|------------------------|-------------------------------------------------|--|--|
| Diesel                 | 2.08                                            |  |  |
| Gasoline               | 0.18                                            |  |  |
| Meat Cooking*          | 0.25                                            |  |  |
| Vegetable Cooking*     | 10.22                                           |  |  |
| <b>Wood Combustion</b> | 4.44                                            |  |  |

Schauer et al., ES&T, 1999ab, 2001ab, 2002

 Emissions from meat and vegetable cooking consist mainly of aliphatic aldehydes, not aromatic hydrocarbons

#### Conclusions

- Photooxidation of naphthalene and alkylnaphthalenes forms SOA with relatively high yields
- Under high NO<sub>x</sub>, SOA is semivolatile, likely due to ring-opening pathways; under low NO<sub>x</sub>, more ring-retaining products are observed in the gas-phase, and SOA appears nonvolatile
- Together with n-alkanes, PAHs likely account for a substantial fraction of SOA formed from further oxidation of semivolatile diesel emissions
- More work is needed to study formation of SOA for other semivolatile compounds (n-alkanes, aliphatic aldehydes, large olefins)
- IVOCs explain part of the "missing OA" in the atmosphere

# Gas-phase mechanism: Naphthalene high NO<sub>x</sub>



# Gas-phase mechanism: Naphthalene high NO<sub>x</sub>



#### Other products:

• Initial: 47 ppb

• Reacted: 31 ppb

# Gas-phase Mechanism: Naphthalene Low NO<sub>x</sub>



Initial: 67 ppb

• Reacted: 45 ppb

 Relative importance of ring-retaining reactions higher

# Gas-phase intermediates

• Ring-opening products (high- and low-NO<sub>x</sub>):

• Ring-retaining products (low-NO<sub>x</sub>):

# **Aerosol Composition**

Naphthalene + HONO + NO + ammonium sulfate seed



